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Decoding Spike Trains Instant by Instant Using Order
Statistics and the Mixture-of-Poissons Model

Matthew C. Wiener and Barry J. Richmond
Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda,
Maryland 20892-4415

In the brain, spike trains are generated in time and presumably also interpreted as they unfold in time. Recent work (Oram et al., 1999;
Baker and Lemon, 2000) suggests that in several areas of the monkey brain, individual spike times carry information because they reflect
an underlying rate variation. Constructing a model based on this stochastic structure allows us to apply order statistics to decode spike
trains instant by instant as spikes arrive or do not. Order statistics are time-consuming to compute in the general case. We demonstrate
that data from neurons in primary visual cortex are well fit by a mixture of Poisson processes; in this special case, our computations are
substantially faster. In these data, spike timing contributed information beyond that available from the spike count throughout the trial.
At the end of the trial, a decoder based on the mixture-of-Poissons model correctly decoded about three times as many trials as expected
by chance, compared with approximately twice as many as expected by chance using the spike count only. If our model perfectly described
the spike trains, and enough data were available to estimate model parameters, then our Bayesian decoder would be optimal. For
four-fifths of the sets of stimulus-elicited responses, the observed spike trains were consistent with the mixture-of-Poissons model. Most
of the error in estimating stimulus probabilities is attributable to not having enough data to specify the parameters of the model rather

than to misspecification of the model itself.
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Introduction

Because responses are presumably interpreted as they unfold in
time, our goal is to decode spike trains instant by instant depend-
ing on whether a spike arrived. If spike trains are thought of as
words in a language, then decoding—figuring out what stimulus
elicited a particular observed spike train—can be thought of as
looking up words in a neural dictionary. Ideally this dictionary
should allow us, at any pointin time, to translate a spike train into
the best possible guess of which stimulus elicited it.

One approach to constructing a neural dictionary is to make
as few assumptions as possible. Another approach, which we take
here, is to model spike trains using (and checking) certain as-
sumptions about their structure. Recent work shows that in spike
trains from three areas of the monkey brain (the lateral geniculate
nucleus, primary visual cortex (V1), and primary motor cortex)
spike times appear to have been thrown down at random, with
probabilities determined by the firing rate profile over time, the
peristimulus time histogram (PSTH) (Oram et al., 1999, 2001;
Baker and Lemon, 2000). Oram et al. (1999) and Baker and
Lemon (2000) simulated stochastic (but non-Poisson) spike
trains with relations among spikes that were indistinguishable
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from those observed in experimental data. Using these models, it
is in principle possible to determine how likely each stimulus is to
have elicited every possible spike train. However, compiling a
dictionary in this way would require simulating very large data
sets, which, although less difficult than gathering enough exper-
imental data, would still be prohibitively time-consuming.

Here we show that for spike trains with the stochastic struc-
ture described by Oram et al. (1999), we can use order statistics
(Arnold et al., 1992), instead of simulation, to calculate directly
how likely each stimulus is to have elicited each spike train. Order
statistics give the probabilities of individual spike times in trains
with this stochastic structure based on the spike count and the
firing rate profile—exactly the parameters used by Oram et al.
(1999). Using order statistics, we can update the stimulus prob-
abilities at each instant depending on whether a spike arrives.
Once we have these probabilities, we can guess, for example, that
the stimulus with the highest probability elicited the spike train.
This is something like looking up a word letter by letter and
discarding words that do not begin with the letters seen so far.

Although much faster than simulation, decoding using order
statistics is, in the general case, still more time-consuming than
we would like. However, calculating order statistics is much sim-
pler and faster in the special case in which the spike trains are
considered as arising from a mixture of a small number of Pois-
son processes. We show that our data are in fact well fit by such a
model. The recognition of this structure in the data substantially
simplifies and speeds decoding of single-neuron spike trains in-
stant by instant.

Materials and Methods

Decoding. Decoding, that is, guessing which stimulus elicited a particular
spike train, has two steps. We first estimate the probability that each
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stimulus elicited the spike train and then choose a stimulus based on
those estimated probabilities. Here we minimize expected error by
choosing the most probable stimulus. If some mistakes are more impor-
tant than others, a decision rule minimizing an appropriate cost function
could be used.

With the decision rule fixed, decoding a spike train as it unfolds in time
requires estimating the probability ps(tj\Rj): the probability, estimated at
time % that stimulus s elicited the response Rj =(ry,... rj), where each r;
is 1 if a spike occurred at time i and 0 if no spike occurred in time bin i.
The presence or absence of a spike is measured in 1 msec bins; time £ is
the time in the ith bin. Any bin width can be used as long as there can be
at most one spike in any bin. All of our calculations could be recast in
continuous time in a straightforward manner.

Using Bayes’ rule, estimating ps(tj\Rj) can be transformed into estimat-
ing the probability that a spike occurs in the next bin (which may depend
on the history of the spike train):

(t._\|R_)P(r:= 1|5, R,
bty = PPl ) ()

if a spike is fired in bin j, or

pi(e|Ry = 2= IR0 Pty 15 R ) N

if no spike is fired in bin j. P(r; = 1s, R; _ ) is the probability that the a
spike appears in the time bin j (r; = 1) if stimulus s has been presented and
the response through time #; _ , is R; _ ;. We use P for the probability of
response given stimulus and p for probability of stimulus given response
to create a typographical distinction. Z, here and throughout, is a nor-
malizing term; that is, it is the sum, across the appropriate variable,
usually the stimulus s, of terms in the numerator of whatever fraction it
appears in.

Using Equations 1 and 2, we proceed bin by bin, updating the stimulus
probabilities depending on whether a spike occurs in each bin. For effi-
ciency, responses can be decoded in small jumps rather than instant by
instant. The probability P(r;...7; , «Js) for any response can be calculated
using the distribution of first spike times, P(7,|s):

P(rj+1"‘rj+k—1:0>rj+k:1|5):P(71:j+k|5)) (3)

k

P(rj+1"'rj+k=0‘5)=1_ EP(Tl=j+kr|s), (4)
K=

where the response through time bin j is assumed known. Below we will
show how to calculate the distribution of first spike times (Arnold et al.,
1992).

We avoid overfitting using three-way cross-validation: the trials were
divided into three subsets, with two-thirds used to fit the model and the
remaining third used to test decoding. Each third of the data was used
twice to fit and once to test; we averaged over the three splits.

Order statistics for spike trains. By considering each spike as the “next
first spike,” the distribution of first spike times P(7, = tj|s) was calculated
for each stimulus using Equations 3 and 4.

For a spike train with # spikes, the (1, k) order statistic describes the
distribution of the kth of n draws, after those draws are sorted; in our
case, this will be P( Tk\s, n), the time of the kth of  spikes in a train elicited
by stimulus s:

n!
P(7 = tfs,n) = mFﬁ' ") 1= F (5

(5)

When we focus on the first of n spikes, i.e., k = 1, Equation 5 simplifies to
describe the (1, 1) or first order statistic P(7,|s, 1):

P(ty = tfs,n) =nfo(p) [1 = F )" " (6)

In Equations 5 and 6, f(#;) is the normalized spike density function or
firing rate profile over time; F(#) is the corresponding cumulative firing
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Figure1.  Construction of count-weighted order statistics. Labels correspond to equations in
Materials and Methods. x-Axis (except £), Time from stimulus onset (milliseconds), truncated
150 msec after stimulus onset for visibility (although the measured responses extend to 300
msec after stimulus onset); vertical lines show 75, 90, and 95 msec after stimulus onset. x-Axis
(E), Spike count. y-Axes: A, trials; B—F, probability. A, Rasters of responses to two stimuli (black,
gray throughout). Each row of dots represents a trial; each dot shows a spike time. B, Firing rate
profiles, (), estimated using local regression (Loader, 1999) with a data window including
10% of the data. C, Cumulative firing rate profiles, £,( ) (they do not reach 1 because the x-axis
is truncated). D, Order statistics, P(m1s, n), forn = 2, 5, and 10 (Eq. 1). £, Count histograms,
p(n), with mixture-of-Poissons approximations used to mitigate the effects of using a small
data set. F, Count-weighted order statistics, P(, Is) (Eq. 7).

rate profile; and the factor [1 — F(£)]" ~ K is the probability of n — k
spikes arriving after time t. As noted above, we discretize time into 1
msec bins (the same precision with which spike times were recorded).

Figure 1 illustrates estimating the quantities in Equation 6 from data
for spike trains elicited by two stimuli (coded black, gray throughout).
One stimulus elicits spikes beginning ~25 msec earlier than the other.
For each stimulus s, the firing rate profile is f,(¢) (Fig. 1 B). F(¢) (Fig. 1C)
is the corresponding cumulative probability. From f,(#) and F,(), we can
calculate P(7,|s, n) for any spike count n (Eq. 6; Fig. 1 D). As n increases,
the weight of the first order statistic shifts left; i.e., the first spike is likely
to occur earlier.

To avoid requiring the decoder to know in advance how many spikes 1
will arrive in a particular trial, we average the first order statistics P(7,]s,
n), weighted with the expected distribution of spike counts p () for
stimulus s (Fig. 1E; we use py(n) to distinguish from p(t), estimated
probability of stimulus s at time #). This count-weighted first order sta-
tistic, P(,s), gives the expected probability of the first spike occurring at
time ¢ for spike density f,(f) and the expected distribution of spike counts
for stimulus s:

Nimax

P(r, = tj\s) = Eps (n)P (7 = tj|5, n). (7)

n=1

In other words, the count-weighted first order statistic gives the distri-
bution of the next interspike interval. Note that P(,|s) sumsto 1 — p.(0);
the term corresponding to no more spikes (# = 0) is left out.
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Figure2. Probabilities of first spike times calculated at different times during a trial. The four

rastergrams in the first row show responses of four stimuli (taken, for this example, from one of
the neurons in the experiment using 16 stimuli). Each row represents a trial; each dot in a row
represents the time of a spike in that trial. The colors of the rasters correspond to the colors used
inthe graphs below. The bottom three panels show the first spike time probabilities calculated at
stimulus onset, 102 msec after stimulus onset, and 164 msec after stimulus onset; under each
plot, vertical lines show the times of spikes in the train being decoded (which comes from the
stimulus whose responses are shown in black). The distribution of next spike times is initially
similar for the red, green, and blue stimuli, but later in the trial, when the blue stimulus fires
much less than the red or green stimulus, the probabilities diverge.

The second order statistic conditioned on the first spike time is calcu-
lated as the first order statistic of a restricted response f,, created by
left-truncating f,(¢) at the time of the previous spike and renormalized to
sum to 1. The (1, k + 1) order statistic can be calculated as the (n — k, 1)
order statistic of the remaining response (Arnold et al., 1992).

Order statistics show a Markov property such that future spike times
depend on past spike times only through the number of spikes already
observed and the most recent spike time. This dependence on the num-
ber of spikes already observed means that the process is not a renewal
process. Figure 2 shows first order statistics calculated at the beginning of
a trial and after the first and fifth spikes in the response.

Figure 3 shows the decoding of several spike trains for the two-
stimulus example of Figure 1.

Simplifying order statistics using a mixture of Poisson distributions.
Equation 7 can be used to calculate the count-weighted first order statis-
tic for any distribution of spike counts. If the spike count distribution is
a mixture of a finite number of Poisson distributions, our calculations
become much simpler.

For a Poisson process with time-varying mean rate A, f;(#), the proba-
bility that the first spike occurs at time j simplifies to:

P(m) = t]s, \,) = A, fi(f)e™ ko resm), (8)

where f,( j) is the spike density function (normalized PSTH) for stimulus
s. Ay Is a rate multiplier. Because we use discrete time bins, the first term
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Figure3. Decoding responses for the example of Figure 1. Labels correspond to equations in
Materials and Methods. Black and gray are as in Figure 1. x-Axis, Time (milliseconds); vertical
lines, 75,90, and 95 msec after stimulus onset. y-Axes, Probability. A, Stimulus probabilities,
p,(1), from decoding a spike train with a single spike at 75 msec, when only one stimulus ever
elicits spikes. B, Decoding a spike train with a single spike at 90 msec. The probability of a black
stimulus rises between 70 and 90 msecafter onset, because early spikes are more likely from the
gray stimulus, and none appear. (, D, Interpretation of a spike 95 msec after stimulus onset
depends on whether there was an earlier spike. The decoding algorithm does not look into the
future, so B—D are identical until 90 msec after stimulus onset, and B.and D are identical until 95
msec after stimulus onset.

in Equation 8, which represents the probability of a spike at time #, can be
>1 for some combinations of f, and A,. To avoid this problem, we use the
approximation:

P(1, = tfs,A) =[1 — e M ]Sz M- 9)

because e ~ (7 is the probability of no spike occurring in time bin j and
is guaranteed to be between 0 and 1.

Equation 8 calculates the sum of count-specific first order statistics
P(7,|s, n) for each n, weighted with the appropriate Poisson probabilities.
This simplifies Equation 7 in the case of a simple Poisson distribution of
spike counts. However, the distributions of stimulus-elicited spike
counts from several brain areas are not adequately modeled by a Poisson
distribution (Baddeley et al., 1997; Gershon et al., 1998; Wiener et al.,
2001).

A mixture of a finite number of Poisson distributions is more flexible
than a single Poisson distribution for modeling stimulus-elicited spike
count distributions and almost as simple. To model the distribution of
spike counts elicited by stimulus s as a mixture of Poisson distributions
with mean rates A; with weights summing to 1, we add the first order
statistics for each mean rate A ; weighted by the probability p(A,;) of
observing that rate:

P(1y = t}s) = >p (A, ) P(m, = t]s, A, ). (10)
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In each mixture, the constituent Poisson processes share a single firing
rate profile f(¢) and differ only in the rate by which the profile is multi-
plied. Thus the model is separable: estimation of the firing rate profile
does not interact with estimation of the distribution of mean counts. This
model provides a good description of our data (see Results).

The calculations in Equations 8 and 10 are conceptually identical to
those in Equations 6 and 7. However, because the sum in Equation 6 can
be taken analytically in the case of a Poisson distribution, the calculations
using a mixture of Poisson distributions are approximately an order of
magnitude faster for our data sets. The speedup comes because we calcu-
late order statistics for only a few Poisson means rather than for many
spike counts. The two methods differ slightly in how they deal with the
discretization of time into bins (the approximation in Eq. 9 is unneces-
sary when using Egs. 6, 7). Below we will show that the effect of this
difference on the estimated stimulus probabilities is negligible.

Model parameters on subintervals. The decoding procedures outlined
above iteratively treat each new spike as the first spike in a shorter re-
sponse. This requires estimating model parameters for the shorter re-
sponse from the parameters for the full model. For the multiple Poisson
formulation, this is simple and quick (whereas in the general case, it is
computationally intensive). The rate function of a Poisson process on a
subinterval is the original rate function restricted to that interval. The
weights p(A,_|s) are continuously updated using Bayes’ rule, because each
weight is the probability with which we believe the spike train being
decoded comes from the particular process. The Poisson processes differ
only by a multiplier of the rate, so our evidence of which process the train
comes from is the number of spikes we have seen:

P (n(j)ls A, )p (A, 5) (0)
P (n(j)ls A, )p (A, ;) (0)

p(A) (j) = (11)

where p(A;)(0) denotes the weights at the beginning of the trial.

Generating surrogate data. To compare the performance of our de-
coder on recorded data with its performance on data with the structure
for which the decoder was designed, we simulate spike trains using a
procedure similar to that used for decoding. We calculate the distribu-
tion P(7]s, 1) of next spike times (above) and randomly select a spike
time. The simulation also proceeds iteratively: after each spike time is
chosen, the distribution for the next is calculated. The probabilities in
Equations 7 and 10 do not sum to 1, because they omit the probability of
no additional spikes. For implementation, the probability that no more
spikes occur in the interval is assigned to an additional bin. When this bin
is selected, we consider the spike train under construction to be com-
plete. By construction, such trains have the structure specified by the
model.

Surrogate spike trains matched to observed data are generated using
the observed spike density and spike count distribution for each stimu-
lus. The same number of trials observed is generated for each stimulus.

Incorporating a refractory period. Real spike train data often depart
from the simple mixture-of-Poissons model by becoming either less
or more likely to fire for a short time after a spike (exhibiting a
refractory or rebound period, respectively). To adjust, we depart
slightly from classical order statistics and replace the spike density
function f(t) with f(t)r(t+ — 7), where 7 is the time of the previous
spike.

We estimate r by comparing the observed interspike interval distribu-
tion with the interspike interval distribution of a set of surrogate trains.
Because interval distribution is related to spike count (more spikes mean
shorter intervals), we actually generate more surrogate trains than
needed and subselect to match the observed spike count distribution. If
the interspike interval in the generated data is significantly different from
the observed interspike interval (x? test, p < 0.05), then r(1) is set to
Zobs(1)/8gen(1), where g, and g,.,, are the interspike interval distribu-
tions in the observed and generated data. A new set of trials is simulated
with this new refractory period (in which the frequency of interspike
intervals of length 1 now matches the frequency in the observed data),
and the process is repeated for subsequent intervals until the interspike
interval distribution of the generated data is indistinguishable from the
interspike interval distribution of the experimental data.
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Estimating the spike density function from data. The spike density func-
tion measures rate variation over time. To estimate the spike density
function for a particular stimulus, we create a histogram at 1 msec pre-
cision (the experimental sampling rate) across trials for that stimulus and
smooth using local regression (Loader, 1999) with a window using 10%
of the data. The spike density functions obtained using this window and
the optimal smoothing window determined by generalized cross-
validation (Craven and Wahba, 1979; Loader, 1999) are similar: median
correlation, 0.98; interquartile range (iqr), 0.95—-0.99. The smoothed his-
togram is normalized so that its sum across bins is 1.

Fitting a mixture of Poisson distributions to observed spike counts. The
probability of drawing a particular count » from a mixture of Poisson
distributions is the weighted sum of the probabilities of drawing the
count 7 from each of the individual Poisson distributions in the mixture:

o
Ep [PUP E——

i=1

P, (n) = (12)

where k is the number of distributions in the mixture; A ; = 0is the mean
of the ith distribution in the mixture for stimulus s; and the weights
p(A,;) are positive and sum to 1.

For each stimulus s, the parameters A ; and p(A,;) are estimated by
maximizing the log likelihood of the observed spike counts given the
corresponding model. We seek the most parsimonious description of
each distribution. Thus, for each stimulus, we first find the best single
Poisson distribution (k = 1). If the observed distribution could reason-
ably have come from the fit Poisson (x ? test, p > 0.05), we use this model;
otherwise, we fit a mixture of two Poisson distributions and again check
for consistency. In general, if the data are inconsistent with a mixture of
k Poisson distributions, we fit a mixture with k + 1 Poisson distributions.
In this work, we did not require mixtures of more than five Poisson
distributions (see Results).

Information calculations. Transmitted information (Shannon and
Weaver, 1949; Cover and Thomas, 1991) is defined as I(R, S) = 25, ( p(r,

s)log( p(s|r)/p(s)), where the stimulus probabilities p(s) are taken from
the experiment, and p(s|r) is calculated using Equation 1 or 2. Using
response models avoids some estimation problems associated with small
data sets (Panzeri and Treves, 1996; Golomb et al., 1997) and yields
estimates of information comparable with those using other validated
methods (Gershon et al., 1998; Wiener and Richmond, 1998).

Data sets. We decoded responses recorded from monkey primary vi-
sual cortex in two previously reported experiments (Kjaer et al., 1997;
Wiener et al., 2001). In each experiment, responses were recorded using
standard single-electrode techniques from complex cells in primary vi-
sual cortex of awake rhesus monkeys. At the beginning of each trial, a
fixation point appeared on a screen. One hundred milliseconds after the
monkey fixated, a stimulus was flashed on the receptive field of the neu-
ron for 300 msec and then replaced with the background. The monkey
was not required to react to the stimulus. If the monkey fixated within
~2° of the fixation point during the entire period from the appearance of
the fixation point until the stimulus disappeared, it was rewarded with a
drop of liquid when the stimulus disappeared. If the monkey shifted its
gaze further than 2° from the fixation point, the trial was aborted, and the
monkey received no reward. There was a delay of 300 msec between trials,
during which the monkey was not required to fixate.

In one set of experiments (Wiener et al., 2001), 128 stimuli were
shown: 32 oriented bars (Fig. 4A), 32 sine-wave gratings (Fig. 4B), 32
Walsh patterns (Fig. 4C), and 32 photographic images (Fig. 4D). In
another experiment (Kjaer et al., 1997), 16 Walsh patterns were used
(Fig. 4E).

Computation. The calculations presented in this paper were performed
in the R statistical computing environment (Ihaka and Gentleman,
1996).

Results

Our original analyses were performed on data from the 29 neu-
rons from the experiment with 16 stimuli (Kjaer etal., 1997).Ina
single experiment (recording from a single neuron), each stimu-
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Figure 4.  Stimuli used in the experiments. In one set of experiments (Wiener et al., 2001),
the stimulus set consisted of 32 oriented bars ( A), 32 sine-wave gratings ( B), 32 Walsh patterns
(0), and 32 photographicimages (D). In the other set of experiments, 16 Walsh patterns were
used (the 8 shown in £ and their contrast-reversed counterparts).

lus was presented approximately the same number of times; the
number of presentations per stimulus varied from neuron to
neuron, ranging from 19 to 230 (median, 42). The mixture-of-
Poissons model made decoding sufficiently fast that we were able
to decode data from the 17 neurons from the experiment with
128 stimuli (Wiener et al., 2001). In these experiments, the me-
dian number of presentations per stimulus ranged from 8 to 52
(median 14) in different neurons; each stimulus was presented
approximately the same number of times. Below we will show
that decoding results using the two methods on the data from the
experiment with 16 stimuli were very similar. Except where stated
otherwise, the results in this paper were obtained using the
mixture-of-Poissons model.
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Figure 5.  Spike count distributions fit by mixtures of Poisson distributions. The top, middle,
and bottom panels show spike count distributions fit by a single Poisson distribution, a mixture
of two Poisson distributions, and a mixture of three Poisson distributions, respectively. In each
panel, the histogram ( gray bars) shows the observed distribution of spike counts. The dots
connected by lines show the fitted values, and the solid and dashed lines show the component
Poisson distributions. A, Single Poisson distribution with mean of 12.4. B, Mixture of two Pois-
son distributions with means of 0.4 (weight, 0.56) and 3.1 (weight, 0.44). C, Mixture of three
Poisson distributions with means of 0.2 (weight, 0.11), 5.8 (weight, 0.31), and 14.4 (weight,
0.58). Note the different scales on the x- and y-axes of the three panels.

Mixtures of Poisson distributions for spike count

We examined the mixture-of-Poissons model for 2636 spike
count distributions in two different sets of V1 data (Kjaer et al.,
1997; Wiener et al., 2001); 50.8% of the spike count distributions
were adequately fit with a single Poisson distribution, 39.4% with
a mixture of two Poisson distributions, 7.4% with three, 2.0%
with four, and 0.4% with five. No distribution required a mixture
of more than five distributions. Examples of mixture models with
one, two, and three components are shown in Figure 5.

The modeled distributions are, by design, smoother than the
observed distributions. Various spike counts are more or less
likely in the model than in the data. Spike counts that are very
frequent in the data may be assigned less probability in the model,
and spike counts not actually observed in the data may be as-
signed nonzero probability (as is the case for a count of four in
Fig. 5A,C). Fitting a mixture of Poisson distributions to the ob-
served spike count is, among other things, a form of smoothing
(meaning we believe that if we gathered enough data we would
encounter a response with four spikes elicited by the stimulus
corresponding to Fig. 5C). As expected when smoothing, the
means of the modeled distributions are very close to the observed
means (median difference across all neurons, 0% of the measured
mean; iqr —3 to +4%), but the variances are lower (median
difference, —5% of the measured variance; iqr, —24 to + 9%).
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Figure 6.  Decoding responses of neurons in monkey V1 in an experiment using 16 stimuli
(Kjaeretal., 1997) (top) or 128 stimuli (Wiener etal., 2001) (bottom). x-Axis, Time from stimulus
onset. y-Axis, Stimulus probabilities. Stimulus probabilities from decoding single spike trains
(black vertical lines below each panel ). Each line shows the probability assigned by the decoding
algorithm to a single stimulus. A, Decoding a response in an experiment using 16 stimuli (Kjaer
etal., 1997). The tap line shows the probability of the stimulus that elicited the spike train (Fig.
AF, second Walsh pattern from the left). B, Decoding a response in an experiment using 128
stimuli (Wiener et al., 2001). The top /ine shows the probability of the stimulus that elicited the
spike train (Fig. 4, first row, second Walsh pattern from the left).

In the Poisson decoding, we model the distribution of mean
spike counts in any subinterval of the trial (from any particular
time to the end of the trial) on the basis of the distribution of
mean spike counts in the entire trial [p(A;) at the start of the
trial] and the firing rate modulation over time (i.e., how many of
the spikes are expected to have occurred by now; see Eq. 11). If we
use the mixture-of-Poissons model to predict, on five succes-
sively shrinking subintervals (beginning 50, 100, 150, 200, and
250 msec after stimulus onset), the variance of spike counts elic-
ited by each stimulus and take a linear regression of log(predicted
variance) versus log(observed variance), we find a negative inter-
cept (median across 46 neurons, —0.13;iqr, —0.25 to —0.03) and
a slope near 1 (median, 0.98; iqr, 0.95-1.02). The r* values of the
regressions are high (median, 0.94; iqr, 0.91-0.96). Below we will
examine the effect on decoding accuracy of using the estimated
subinterval spike count distributions compared with using spike
count distributions directly measured on the subintervals.

Decoding

Figure 6 shows an example of the development of stimulus prob-
abilities over time (i.e., the probability that each stimulus elicited
the observed spike train) when decoding using the mixture-of-
Poissons method. Figure 6 A shows an example from an experi-
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Table 1. Probability of most probable (guessed) stimulus when spike trains are
decoded using the mixture-of-Poissons model

Probability of

guessed stimulus Margin of victory

Experiment [median (iqr)] [median (iqr)]
16 stimuli

Correct guesses 0.29(0.20-0.42) 0.08 (0.03—0.20)

Incorrect guesses 0.22 (0.16-0.32) 0.04 (0.02-0.11)
128 stimuli

Correct guesses 0.11(0.08-0.19) 0.03 (0.01-0.07)

Incorrect guesses 0.10 (0.07-0.15) 0.02 (0.01-0.05)

Shown is the probability (at the end of the counting window, 300 msec after stimulus onset) of the most probable
stimulus in the experiments with 16 and 128 stimuli. Also shown is the margin by which the highest probability was
greater than the second-highest probability (the margin of victory). Probabilities are presented separately for trials
in which the stimulus with the highest probability did elicit the trial (correctly decoded trials) and for those in which
the trial was elicited by some other stimulus (incorrectly decoded trials). Results using order statistic decoding for
neurons from the experiment with 16 stimuli are nearly identical.

ment in which 16 Walsh patterns were shown (Kjaer et al., 1997),
and Figure 6 B shows an example from an experiment in which
128 stimuli were shown (Wiener et al., 2001). The spike trains
decoded are shown underneath each panel. The stimulus proba-
bilities at each time depend only on the spike train observed up to
that time; the decoding algorithm does not look into the future.
Although the probabilities change more abruptly when spikes
arrive, they change even when no spikes are fired. Thus the ab-
sence of spikes, as well as their presence, is informative (cf. Sher-
lock Holmes’s dog that did not bark).

Figure 6, A and B, shows correctly decoded trials in which one
stimulus is far more probable than all others. In these cases, the
probability of the guessed stimulus is high. Table 1 summarizes
the distribution of the maximum estimated probability, that is,
the probability of the guessed stimulus, at the end of our decod-
ing window (300 msec after stimulus onset). It also shows the
difference between the probabilities of the most probable and
second most probable stimulus (the “margin of victory” over the
“runner-up”). The winning probabilities are higher in the exper-
iments with 16 stimuli than in the experiments with 128 stimuli,
because the total probability (p = 1) is divided among fewer
stimuli.

Intuitively, it should become easier to distinguish among
stimuli as the probability of one stimulus rises and the probabil-
ities of others fall. We evaluate the decoding in two ways: by
measuring the amount of information obtained from the spike
train and also by seeing how well the decoding lets us guess which
stimulus elicited the observed response. As stated in Materials
and Methods, in all our calculations we avoided overfitting using
three-way cross-validation: the available trials were divided into
three subsets, with two-thirds used to fit the model and the re-
maining third used to test decoding. Each third of the data was
used twice to fit and once to test; the results we present are aver-
aged over the three sets.

Information theory (Shannon and Weaver, 1949) shows that
the amount of information in a set of spike trains depends on how
they are interpreted, that is, on the nature of the neural code.
Figure 7, A and C, shows that for both sets of experiments, de-
coding using only the number of spikes in a response (dark boxes)
yields substantially less information than considering both spike
count and spike timing using the mixture-of-Poissons model
(light boxes).

Does this extra information provided by paying attention to
timing actually help us decode more accurately? It is natural to
guess that the stimulus with the highest probability elicited the
observed spike train (as it did in both examples in Fig. 6). Figure



2400 - J. Neurosci., March 15, 2003 - 23(6):2394 —2406

128 stimuli

16 stimuli

Q_A e
ool “
L~ 0
3 2 -
c
o < =
— ™
(1]
€ 1 0
'60 o
Y
£ o =

(<} o

4

0 100 250 0 100 '250°
time from stimulus onset (ms)

% correct (x chance)
2

Figure7. Decoding using timing (through the mixture-of-Poissons model) is more effective
than decoding using spike count alone. A, G, Distribution across 29 (A) or 17 () neurons of
information transmitted by the neuronal responses (spike trains) about which stimulus was
shown, using expanding windows starting at stimulus onset. Dark boxes, Spike count only; light
boxes, spike count and timing together. B, D, Distribution across 29 (B) or 17 ( D) neurons of the
percent of trials correctly decoded by guessing the stimulus with highest probability of having
elicited the observed response. For comparability, figures are presented as multiples of the
percent of trials that would be correctly decoded by chance (8, 1/16 = 6.25%; D, 1/128 =
0.78%). The dotted line shows the percent of trials correctly decoded by chance. We avoided
overfitting using three-way cross-validation: the available trials were divided into three sub-
sets, with two-thirds used to fit the model and the remaining third used to test decoding. Each
third of the data was used twice to fitand once to test; the results shown here are averaged over
the three sets. Boxes, Median; line and indentation at center, interquartile range: bottom and top.
If notches do not overlap, corresponding medians are different ( p << 0.05). Whiskers have been
eliminated, and the dark boxes have been made wider, for visibility.

7, B and D, shows the distribution (across 29 and 17 neurons,
respectively) of the percent of trials correctly decoded, that is, for
which the highest-probability stimulus did elicit the response.
For comparability between the two experiments, the figures are
shown as multiples of the percent of trials that could be correctly
decoded simply by guessing (1/16 = 6.25%, and 1/128 = 0.78%).
In both experiments, more trials were correctly decoded using
both spike count and timing via the mixture-of-Poissons method
than using spike count alone.

When timing is taken into account, the amount of informa-
tion transmitted by the neuronal responses is larger in the exper-
iment with 128 stimuli than in the experiment with 16 stimuli
(Fig. 7A,C). This difference could be because one experiment uses
more stimuli than the other, or it could be because the larger
experiment used stimuli of several different kinds. To check
whether the number of stimuli was the crucial factor, we ran-
domly selected subsets of 64, 32, and 16 stimuli, allowing stimuli
of all four kinds to enter each set. Figure 8 A shows that this has
very little effect on the amount of information transmitted by the
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Figure 8. Differences in stimulus set, rather than in the number of stimuli, account for

differences in the results of the two sets of experiments. x-Axis, Time from stimulus onset
(milliseconds). y-Axis, Transmitted information (bits). A, Information transmitted by responses
of asingle neuron to different numbers of stimuli: 128 (solid circles), 64  plus symbols), 32 (open
triangles), and 16 (open circles). For all except the full set of 128 stimuli, the /ines represent the
median value of transmitted information over 100 random samples (from the full set of 128) of
the appropriate number of stimuli. Transmitted information drops only slightly with the num-
ber of stimuli. B, Information transmitted by responses of the neuron to random subsamples of
32 stimuli ( filled circles; same as triangles in A) and to subsets of 32 stimuli consisting of bars
(Fig. 4 A, open circles), gratings (Fig. 4 B, open triangles), Walsh patterns (Fig. 4C; plus symbols),
and photographic stimuli (Fig. 4D; times symbols). Much less information is transmitted by
responses to Walsh patterns or photographic stimuli than by responses to bars, gratings, and
random subsamples.

responses. Figure 8 B compares the amount of information trans-
mitted by responses to the randomly selected groups of 32 stimuli
with the amount of information transmitted by the four subsets
of 32 stimuli consisting of the bars, gratings, Walsh patterns, and
photographic images, respectively (Fig. 4 A—D). Responses to the
Walsh patterns and photographs used in these experiments
transmit less information than do the responses to bars and
gratings.

Wiener et al. (2001), in an analysis using spike count alone,
have previously shown that the difference in information trans-
mission in neuronal responses to stimuli of the four different
kinds is primarily attributable to the fact that responses to Walsh
patterns and photographs have a smaller dynamic range than
responses to bars and gratings. This new result shows that the
difference persists in an analysis that takes into account spike
timing as well. The persistent difference in results obtained using
different kinds of stimuli reinforces a point made by Wiener et al.
(2001): conclusions based on experiments using a narrow set of
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Figure 9. Relation across neurons between transmitted information and percent of trials
correctly decoded for individual neurons. x-Axis, Transmitted information (bits). y-Axis,
Percent of trials correctly decoded (as a multiple of the number of trials that would be
correctly decoded by chance). Each symbol shows transmitted information and the per-
cent of trials correctly decoded 300 msec after stimulus presentation for a single neuron.
The percent of trials correctly decoded increases with increasing information transmitted,
except when decoding using the mixture-of-Poissons method in the experiment with 128
stimuli. Circles, Decoding using the spike count in the experiment with 16 stimuli; trian-
gles, decoding using the spike count only in the experiment with 128 stimuli; plus symbols,
decoding using the mixture-of-Poissons method in the experiment with 16 stimuli; times
symbols, decoding using the mixture-of-Poissons method in the experiment with 128
stimuli.

stimuli may not generalize well to experiments using a larger set.
The need for a large number of stimuli unfortunately conflicts
with the need for many trials per stimulus in an experiment with
a limited number of trials.

Relation between decoding success and

transmitted information

Intuitively, we expect transmitted information and decoding suc-
cess to be related: if more information is transmitted by the re-
sponses, more responses should be correctly decoded. Above
(Fig. 7) we showed that in both sets of experiments (with 16 and
128 stimuli), transmitted information and percent of trials cor-
rectly decoded both increase as the trials progress. Figure 9 shows
that, for individual neurons from the two sets of experiments,
more information transmitted generally corresponds to a greater
portion of trials correctly decoded.

Effect of refractory period

Because we estimate the spike count distribution from data, we
incorporate the effect of refractory period on spike count. We
found that the effect of any additional refractory or rebound
period on the number of trials correctly decoded is very small:
0.2% fewer trials are correctly decoded when the refractory pe-
riod is included (median across neurons; iqr, —2.7 to 2.2%). The
effect on individual stimulus probabilities was also small: in
the experiments using 16 stimuli, the median correlation between
the estimated stimulus probabilities obtained when taking the
additional refractory effects into account and those obtained
when not taking the additional refractory effects into account was
0.997 (median across all trials in 29 neurons), and the fifth per-
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centile of correlations was 0.96. The median correlation in the
experiments using 128 stimuli was 0.999 (median across all trials
in 17 neurons), and the fifth percentile was 0.99. Except where
otherwise noted, the results throughout this study were calcu-
lated using the refractory period.

Decoding signal versus decoding noise

When there are no differences in timing among responses elicited
by different stimuli, we would expect the decoder to reduce to a
spike count decoder. To check this, we simulated two sets of
responses with identical spike density functions (normalized
PSTH) but different distributions of spike count (Poisson distri-
butions with means of 4 and 10). The only nonrandom differ-
ences in timing arise from the differences in spike count. A trial
with seven spikes should, at the end of the trial, be assigned with
probability 0.4 to the Poisson distribution with mean 4 and with
probability 0.6 to the Poisson distribution with mean 10. In fact,
depending on the data used to create the Poisson models, differ-
ent spike trains of length 7 will be assigned different probabilities,
but we expect the assigned probabilities to converge to p = 0.4
and 0.6. Figure 10 A shows that when spike timing is known to be
random, decoding on the basis of timing (using the mixture-of-
Poissons model; white boxes) converges to the correct answer
more slowly than the optimal decoding using spike count alone
(black boxes).

A similar effect can be observed in surrogate data generated to
match the spike count distribution seen in one of the neurons
from the experiment with 16 stimuli but with spikes equally likely
at any time (i.e., with a flat PSTH) for all stimuli. Here again,
spike timing is purely random and carries no information about
which stimulus generated the response. Figure 10 B shows that
more trials are correctly decoded using the spike count alone than
using the full mixture-of-Poissons model. Again, attempting to
decode using random timing degrades performance.

In the cases just presented, the spike density function is (by
construction) of no help in decoding but still must be estimated.
When a small amount of data is available, random spike time
variations cause differences in the estimates of the spike density
functions for different stimuli, and these spurious differences
interfere with decoding. The random differences in the spike den-
sity functions become smaller when more data are available to
estimate them (although true differences in spike density func-
tions can be detectable even with modest amounts of data). The
need for data to eliminate spurious correlations would only in-
crease if more complicated timing features were to be taken into
account. Thus it is important to avoid trying to decode on the
basis of complicated timing features that can be accounted for as
stochastic consequences of the spike count and simpler timing
features.

Comparing different decoding variants

Trains from the neurons from the experiment with 16 stimuli
were decoded using both the order statistic method (with the
spike count distributions represented using mixtures of Poisson
distributions) and the simplified mixture-of-Poissons method.
The correlation between the two sets of probabilities at the end of
the trial (that is, 300 msec after stimulus onset) was 0.997 (medi-
an across neurons; iqr, 0.992—0.999). This verifies that the two
methods give nearly identical results (up to certain issues related
to time discretization near the end of a trial). As a result, the same
stimulus was guessed by the two methods in 95% of the cases
(median across neurons; iqr, 94—-98%). It may seem odd that
different stimuli could be guessed when the correlation between
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Figure10.  Decoding using the mixture-of-Poissons method is inferior to spike count decod-

ing when there are no timing differences among responses to different stimuli. 4, Mixture-of-
Poissons decoding converges to the correct answer less quickly than does spike count decoding
in a two-stimulus example with identical PSTH for both stimuli. x-Axis, Number of trials per
stimulus. y-Axis, Distribution of estimated probabilities that a train with seven spikes arose from
ahomogeneous Poisson process with a mean of 4 spikes rather than from one with a mean of 10
spikes. The left (open) box in each set shows results using the mixture-of-Poissons decoding
method. The right ( filled) box shows results when decoding on the basis of spike count alone.
The simulated data were generated by ahomogeneous Poisson process with amean of 4 for one
stimulus and a homogeneous Poisson process with mean of 10 for the other stimulus. The mean
number of spikes for each process was held fixed while the number of trials changed. Similar
results were obtained using inhomogeneous Poisson processes as long as the rates varied in
time in the same way (i.e., the normalized PSTHs were the same for the two processes). The left
box in each set represents 2500 values, the results of decoding 500 randomly generated test
trains using models derived from five different sets of simulated data. The right box represents
250 values, the result of decoding the response “seven spikes” according to the models derived
from 250 sets of simulated data (using additional sets of simulated data does not change the
results). Interpretation of box plots: The line at the center of each box shows the median esti-
mated probability, and the notch shows a 5% confidence interval for the median. The bottom
and top of the box show the 25th and 75th percentiles, and the bottom and top whiskers show
the 5th and 95th percentiles. B, x-Axis, Time from stimulus onset (milliseconds). y-axis, Number
of trials correctly decoded (as a multiple of chance) using the spike count only (dark boxes) and
the mixture-of-Poissons method (/ight boxes). Each box plot represents results from 25 artificial
data sets with spike distributions modeled on those from one of the neurons from the experi-
ment with 16 stimuli and no differences in the timing of stimuli as above. Interpretation of box
plots is as above (whiskers removed for visibility).

probabilities is so high. Table 1 shows that the difference between
the probability of the winning stimulus and the next most prob-
able stimulus can be quite small; thus small discrepancies can
change the guessed stimulus in a small number of trials. As would
be expected, the differences in the largest and second-largest
probabilities in trials when the two methods made the same guess
were ~5 times as large as the differences in trials when the two
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Figure 11.  Decoding results using the mixture-of-Poissons model to estimate spike count

distributions on subintervals (dark boxes) are similar to those obtained when directly measuring
spike count distributions on subintervals (light boxes). A, The portion of trials correctly decoded
is similar for the two methods. x-Axis, Time from stimulus onset (milliseconds). y-axis, Percent
of trials correctly decoded (as a multiple of chance). The dotted line shows the approximate
percent of trials correctly decoded by chance. B, Using measured distributions results in higher
transmitted information than using estimated distributions. x-Axis, Time from stimulus onset
(milliseconds). y-Axis, Transmitted information. Light boxes are narrower for visibility only. This
graph uses the data from the experiment with 16 stimuli (Kjaer et al., 1997). Interpretation of
box plots is as in Figure 7.

methods made different guesses. We did not decode the experi-
ments with 128 stimuli using the order statistic method because
of the computational burden.

As previously presented, when using the mixture-of-Poissons
model, we have modeled the distribution of mean spike counts in
any subinterval of the trial (from any particular time to the end of
the trial) on the basis of the distribution of mean spike counts in
the entire trial [A,; and p(A) at the start of the trial] and the firing
rate modulation over time (Eq. 11). It is possible, at substantial
expense in both computation time and additional model com-
plexity, to avoid this approximation by measuring the distribu-
tion of spike counts in each subinterval and finding a new mix-
ture of Poisson distributions to model each distribution. Despite
the additional model complexity and computation, decoding us-
ing measured subinterval distributions gives results similar, but
not identical, to those obtained when using estimated subinterval
distributions: the correlation between the two sets of probabili-
ties at the end of trials was 0.88 (igqr, 0.83—0.94), and the same
stimulus was guessed in 75% of the trials (median across neurons;
iqr, 65-82%). Approximately the same number of trials were
correctly decoded using the two methods (Fig. 11A), although
using the measured distributions yielded slightly more transmit-
ted information (Fig. 11 B).
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Figure12.  Performance of the decoder on real data and matched surrogate data. A, Percent of trials correctly decoded (in multiples of b Y P

chance) for the real data (x-axis) and for matched surrogate data ( y-axis). Results are shown both when decoding using the spike count
only (circles, 16 stimuli; triangles, 128 stimuli) and when decoding using the mixture-of-Poissons method ( plus symbols, 16 stimuli; times
symbols, 128 stimuli). Each symbol shows results for a single neuron, and each neuron is represented twice, once for decoding using the
spike count and once for decoding using the mixture-of-Poissons method. The figures for surrogate data are medians across 10 artificial
data sets. Real data are decoded nearly as well as surrogate data when using the spike count code and even when using the mixture-of-
Poissons method for the experiment with 16 stimuli. However, for data from the experiment with 128 stimuli, the decoder performs much
better on surrogate data than real data. 8, The performance of the decoder depends on the number of trials per stimulus available. x-Axis,
Median number of trials per stimulus. y-Axis, Ratio of the number of trials correctly decoded for surrogate data to the number of trials
correctly decoded in real data. Only data from the experiment with 128 stimuli decoded using the mixture-of-Poissons method are shown

(times symbols are used for consistency with A).

Decoding using the order statistic method or the mixture-of-
Poissons method with directly measured spike count distributions
on subintervals takes substantially longer (by approximately an or-
der of magnitude) than using the mixture-of-Poissons model when
estimating the count distributions on subintervals. The results of this
section show that the extra time produces little change in decoding.

How good is the mixture-of-Poissons model?

Time-rescaling goodness-of-fit test

Barbieri et al. (2001) and Brown et al. (2002) presented a method
for checking the goodness of fit of spike-train models. Their
method is based on the time-rescaling theorem, which shows that
any point process can be transformed, by a suitable rescaling of
time, into a homogeneous Poisson process. To apply their
method to our data, we randomly chose two-thirds of the trains
to estimate the model, withholding one-third of the trains to use
as a test set. Each model was tested using the Kolmogorov—Smir-
nov test presented by Brown et al. (2002), with p = 0.95. In the
neurons from the experiment with 128 stimuli, the test spike
trains were consistent with the model for 109 stimuli (median
across neurons; iqr, 104—112). In the neurons from the experi-
ment with 16 stimuli, the test spike trains were consistent with the
model for 11 stimuli (median across neurons; iqr, 10—13). When
the refractory—rebound effect was ignored, the results were very
similar: the test spike trains were still consistent with the model
for 108 of 128 stimuli (median across neurons; iqr, 104—111) and
in 11 of 16 stimuli (median across neurons; iqr, 9-13). Overall,
82% of stimuli were consistent with the model when the refrac-
tory period was included in the model, and 78% were still con-
sistent when the refractory period was ignored. Thus the mixture
of Poisson distributions with different mean rates, and therefore
different temporal structures, seems to account for much of the
observed temporal structure of the spike trains. This may explain

tificial spike trains much more accurately
than real spike trains.

We generated cell-matched surrogate
data as described in Materials and Meth-
ods. Figure 12A compares the percent of
trials correctly decoded in real and surro-
gate data, both for the spike count code
and using the mixture-of-Poissons model.
When decoding using the spike count only,
we correctly decode 15% (median across
neurons; iqr, 7-20%) more trials from sur-
rogate data than from real data in the ex-
periments with 16 stimuli (circles) and
18% (median; iqr, 10-23%) more in the experiments with 128
stimuli (triangles). The decoder does nearly as well when decod-
ing data from the experiments with 16 stimuli using the mixture-
of-Poissons method ( plus symbols): we correctly decode 17%
(median; iqr, 7-23%) more trials from surrogate data than from
real data. However, when the mixture-of-Poissons method is
used with data from the experiments with 128 stimuli (times
symbols), many more trials are correctly decoded from surrogate
data than from real data (median, 100% more; iqr, 75-150%).
Figure 12B shows that the performance of the mixture-of-
Poissons decoder is related to the amount of data available: the
more data available to estimate the model parameters in the first
place, the more closely the number of trials correctly decoded in
real data approaches the number correctly decoded in surrogate
data.

To check whether the number of stimuli involved (and there-
fore the complexity of the problem) contributes to the difference
between the two sets of results, we created 16-stimulus neurons
from 128-stimulus neurons by taking the responses from 16 ran-
domly chosen stimuli and discarding the rest. Twenty-five sub-
neurons were created from each of the two neurons with the most
trials per stimulus (50 and 52). In these artificial neurons, 16%
more trials are correctly decoded from surrogate data than from
the real data (median; igr, 11-20%), not significantly different
from that seen for the neurons from the experiment that actually
had only 16 stimuli (Kruskal-Wallis test, p = 0.7). There is still no
significant difference if we try to minimize the influence of the
number of trials per stimulus by comparing the results for the
subsampled data only with results from the seven neurons from
the experiment with 16 stimuli with between 40 and 60 trials per
stimulus (Kruskal-Wallis test, p = 0.2). Thus correctly choosing
among 128 stimuli requires more data to parameterize the model
than correctly choosing among 16 stimuli.
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Accuracy of individual stimulus A
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probabilities: model error and

estimation error

The most stringent possible test of the per-
formance of the decoder assesses the accu-
racy of all the estimated stimulus probabil-
ities. For example, if we look at all the
stimuli assigned probabilities near p = 0.1
in various trials, we would hope that those
stimuli were actually the stimuli that elic-
ited those trials 10% of the time. This is
essentially the same test we might use to
evaluate the quality of a weather-
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forecasting service: it should rain on half
the days with a 50% chance of rain, one-
fourth of the days with a 25% chance of
rain, and so on. To test this, we bin the
estimated probabilities (we have one esti-
mated probability for each stimulus for
each trial) and then ask how often the
stimuli represented in each bin really did
elicit the corresponding trial.

Departure from accurate prediction
can come from two sources. The first pos-
sible source of error is model misspecifica-
tion: the mixture-of-Poissons model may
not capture the true structure of the spike
trains. The second possible source of error
is difficulty fitting the model on the basis
of the amount of data available. We will call these model error
and estimation error. To separate these errors, we must examine
how accurately the model estimates stimulus probabilities in
three different kinds of data: the real data; artificial data, gener-
ated according to the model, with the same number of trials per
stimulus as the real data; and artificial data, generated according
to the model, with many more trials per stimulus than available in
the real data. Model error can be examined by comparing results
from the real data and the smaller set of artificial data: because the
two sets have equal numbers of trials per stimulus, any difference
in our ability to decode must derive from the fact that one set of
data is known to be consistent with the model, whereas the other
is not. Estimation error can be examined by comparing results
from the larger and smaller artificial data sets: because both arti-
ficial data sets are known to be consistent with the model, any
difference in our ability to decode must derive from difference in
the amount of data available.

Figure 13A shows that, for the data from the experiment with
16 stimuli, the predicted stimulus probabilities are close to the
true stimulus probabilities. Small predicted stimulus probabili-
ties tend to be slightly too large, and large predicted stimulus
probabilities tend to be slightly too small. This is true whether we
decode using the spike count only (filled squares) or using the full
mixture-of-Poissons model (filled circles), although the differ-
ence is smaller for spike count only. The same effect is seen in
artificial data with the same number of trials per stimulus as seen
in the real data, although it is substantially less pronounced (open
squares, open circles). This indicates that some of our error is
attributable to the model not quite fitting the data. However, in
artificial data with many more trials per stimulus than in our
actual data (500 trials per stimulus), the predicted probabilities
are almost exactly equal to the observed probabilities both when
the spike trains are decoded using the spike count only (plus
symbols) and when they are decoded using the full model (times

Figure 13.
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Accuracy of estimated stimulus probabilities. x-Axis, Estimated stimulus probability. y-Axis, Observed probability.
Observed probabilities are calculated by binning the estimated probabilities (one for each stimulus for each trial) and then asking
how often the stimuli represented in each bin really did elicit the corresponding trial. If our model described the data perfectly, and
we had sufficient data to estimate the model, the estimated and observed probabilities would be identical. In both panels, the
number of probabilities in each bin drops sharply as the estimated probability increases. 4, Results from 29 neurons from the
experiment with 16 stimuli. Filled symbols show results for the real data; open symbols show results for artificial data with the same
number of trials per stimulus as the real data; times and plus symbols show results for very large artificial data sets (500 trials per
stimulus). Squares and plus symbols show results when decoding using the spike count only; circles and times symbols show results
when decoding using the full mixture-of-Poissons model. 8, Results from the two neurons with the most (50) trials per stimulus
from the experiment with 128 stimuli. Symbols are as in A. Results for extremely large artificial data sets are not included because
of the computational burden. Note different scales in the two panels.

symbols). The excellent agreement between estimated and actual
stimulus probabilities obtained on large artificial data sets serves
as confirmation that the decoder works as it is supposed to and
also indicates that part of the error seen with real data sets is
attributable to difficulty correctly estimating the model parame-
ters (the spike density functions and the mixtures of Poissons for
spike count distributions) using the amount of data available.

Figure 13B is similar to Figure 13A but for data from the two
neurons with the most (50) trials per stimulus in the experiments
with 128 stimuli. Here the predicted probabilities are almost al-
ways lower than the true probabilities, whether decoding using
the spike count only or using the mixture-of-Poissons model.
Because of the amount of computation involved, we do not in-
clude results for extremely large artificial data sets in Figure 13B,
but the results in Figure 13A imply that the decoder works prop-
erly, so for a sufficiently large artificial data set, the probabilities
would lie along the identity line. Figure 13A shows that most of
our misestimation of probabilities can be ascribed to limited
sample size rather than to mis-specification of the model (i.e., the
distance between the filled and open symbols is smaller than the
distance between the open symbols and the identity line), partic-
ularly for the full mixture-of-Poissons model. Excluding the
three smallest probability bins (in which the error is extremely
small), estimation error accounts for approximately three-fifths
of the total estimation error when decoding using spike count
only and for almost four-fifths of the error when decoding using
the full mixture-of-Poissons model. The fact that the decoder
estimates probabilities less well in the data with 128 stimuli than
in the data with 16 stimuli again shows that more data are re-
quired to accurately solve the more difficult problem.

Discussion

In this paper we present the order statistic model of spike trains,
which is based on the observation that in several brain areas,
single-neuron spike trains are almost entirely described as sto-
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chastic samples from the firing rate profile (Oram et al., 1999,
2001; Baker and Lemon, 2000). In accordance with these obser-
vations, in the order statistic model, individual spike times are
informative because they reflect underlying rate variation. This
model requires estimating only the spike count distribution, the
spike density function, and the interspike interval distribution
from data. All of these can be reasonably estimated using
amounts of data gathered in virtually every experiment. Our re-
sults show that for decoding problems with many conditions,
decoding performance is quite good with amounts of data fre-
quently collected, but very large amounts of data may be needed
for optimal decoding.

The order statistic model is general and can be used with any
estimate of the spike count distribution, modeled or measured.
The mixture-of-Poissons model gives up some of this generality,
modeling each spike count distribution as a mixture of Poisson
distributions and the spike trains as instances of a mixture of
Poisson processes. In exchange, the Poisson model speeds up the
calculation of order statistics; we calculate distributions of next
spike times for a few (up to five) Poisson means instead of for
many (up to 50) spike counts (Egs. 8, 10 vs 6, 7). For our data,
decoding using the Poisson model was approximately an order of
magnitude faster, and the extra generality of the order statistic
model was not needed: >98% of the spike count distributions
were fit with mixtures of three or fewer Poisson distributions, and
all were fit by mixtures of five or fewer. A mixture of Poisson
processes may or may not fit a particular data set. Other struc-
tures identified in particular data sets might help simplify calcu-
lating order statistics in a similar way, although the details of the
calculation would be different.

Any decoding method must decide which aspects of a re-
sponse are important, that is, carry information that can be used
to distinguish among stimuli, and which can be ignored. Ignoring
spike timing that does carry information reduces decoding accu-
racy (Fig. 7), but so does paying attention to timing that does not
carry information (Fig. 10). When spike timing is taken into
account, there are so many distinct responses that a great deal of
data is needed to determine whether apparent correlations be-
tween stimulus and response are reliable or merely (as in the
examples of Fig. 10) sampling artifacts. Thus decoding using tim-
ing is difficult precisely because timing presents great opportuni-
ties for encoding. Here we avoid the difficulties of directly count-
ing how often each response is elicited by using a model that
captures the structure of observed responses, including high-
order correlations among spike times (Oram et al., 1999, 2001).
This model leads to simple decoding methods that are much
more effective than decoding based on spike count alone.

The decoding scheme described here assumes that the re-
sponse being decoded was generated by one of the stimuli, and in
that case, we checked in a small amount of data from area TE of
monkey temporal lobe that the decoder works even when spikes
occur between trials. We can also treat the no-stimulus, or inter-
trial, condition as just another experimental condition. Even in
this case, the decoding algorithm assumes that the time of stim-
ulus onset is known. Several groups have that suggested that eye
movement or other causes of large-scale change in the visual field
cause neural responses that can be used as synchronizing or reset
signals (Sobotka and Ringo, 1997; Sobotka et al., 1997; Huang
and Paradiso, 2000; Greschner et al., 2002).

The question of response alignment is related to the question
of response latency. Once responses are aligned on stimulus on-
set, systematic differences in response latency are reflected in the
firing rate profile over time and possibly also in the spike count
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distribution. Figures 1 and 3 show examples, based on real data,
of constructing order statistics and decoding real data with a
latency difference. Rhythmic firing phase-locked to stimulus on-
set would also be reflected in the PSTH. Rhythmic firing not
phase-locked to stimulus onset would not show up in the PSTH
but might be accounted for by the refractory—rebound term. Any
additional underlying statistical structure different from that as-
sumed by the model might require additional modeling work to
accommodate.

Other models and methods

The models presented here can be estimated using modest
amounts of data, because they assume that spike trains have a
certain stochastic structure. This contrasts with the “direct meth-
od,” which makes no assumptions about the form of the neural
code but requires very large data sets, because it directly counts
how often each stimulus elicits each response. The direct method
has been used to calculate information transmission rates in the
fly (Strong et al., 1998), in anesthetized monkeys (Reinagel and
Reid, 2000), and in isolated retina (Nirenberg et al., 2001). How-
ever, in awake monkeys the amount of data gathered has not been
sufficient to estimate information transmitted by spike timing;
only calculations using the spike count in single bins have been
possible (Reich et al., 2001). Thus, at least in awake monkeys, the
direct method cannot currently substitute for finding some prin-
ciple allowing us to compactly describe spike trains, that is, a
model.

Others researchers have modeled spike trains using variants of
Poisson processes. Lansky and Vaillant (2000) and Lansky et al.
(2001) model the responses of hippocampal place cells using
mixtures of two Poisson processes. Kass and Ventura (2001)
model firing probability as a product of time from stimulus onset
and a refractory term depending on the time of the last spike (i.e.,
an inhomogeneous Poisson process with a refractory period);
they estimate the two components together using a generalized
linear model, whereas we estimated them separately. Barbieri et
al. (2001) model spike trains by characterizing interspike inter-
vals using gamma and inverse Gaussian distributions (generaliz-
ing the exponential distribution of intervals arising from a Poisson
process). They use time rescaling to account for inhomogeneities in
firing rate, inducing a Markov dependence similar to that seen in the
order statistic and mixture-of-Poissons models presented here. One
possible use of statistical models such as the mixture-of-Poissons
model and the others described above is to provide a benchmark
against which to evaluate spike trains produced by biophysical mod-
els that address the cellular mechanisms of neuronal information
processing.

Another way to take timing into account when decoding is to
sequentially decode the spike count in different time bins. In the
limit of bins that can contain at most one spike, the decoder
simply asks, at each time, “Did a spike occur now? . . . now? . ..
now?” This is equivalent to decoding using order statistics or the
mixture-of-Poissons model only if the responses in all bins are
independent. The Markov dependence built into the order statis-
tic and mixture-of-Poissons models seems to incorporate most of
the correlations observed in data (Oram et al., 1999).

We decode to determine which of a categorical set of stimuli
was presented, without regard to stimulus characteristics such as
bar or grating orientation. Other groups have developed ap-
proaches to reconstruct continuously varying signals (Gabbiani
and Koch, 1996; Rieke et al., 1997; Brown et al., 1998; Schwartz
and Moran, 2000; Wessberg et al., 2000; Manwani et al., 2001;
Serruya et al., 2002). An appropriate discretization of the contin-
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uous signal might allow our methods to be applied to these prob-
lems. This might require finding a time scale on which the PSTH
gave information about the signal (that is, how long a section of
signal should be treated as a single stimulus in our formulation),
as well as imposing probabilistic continuity conditions (as by
Brown et al., 1998).

Conclusion

The results of Oram et al. (1999) suggest that, at least in V1 and
the lateral geniculate nucleus, individual spike times are random
and carry information only by reflecting underlying rate varia-
tion. Other features of precise spike timing can be predicted from
spike count and the PSTH and therefore cannot carry informa-
tion unavailable from these coarser measures. In this context,
order statistics (Arnold et al., 1992), whether calculated directly
or in special cases such as a mixture of Poisson processes, formal-
izes the intimate connection between spike timing and spike
count (Wiener and Richmond, 1999; Oram et al., 1999). Because
spike count distributions are often non-Poisson (Baddeley et al.,
1997; Gershon et al., 1998), single inhomogeneous Poisson mod-
els cannot be expected to match features of precise timing. There-
fore, the mixture-of-Poissons model is a more appropriate null
hypothesis when searching in neuronal responses for timing re-
lations that are unexpected, and which therefore may carry
unique information.
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